Absorption and metabolism

Morphine can be taken orally, rectally, subcutaneously, intravenously, intrathecally or epidurally. On the streets, it is becoming more common to inhale (“chasing the dragon”), but, for medicinal purposes, intravenous (IV) injection is the most common method of administration. Morphine is subject to extensive first-pass metabolism (a large proportion is broken down in the liver), so, if taken orally, only 40–50% of the dose reaches the central nervous system. Resultant plasma levels after subcutaneous (SC), intramuscular (IM), and IV injection are all comparable. After IM or SC injections, morphine plasma levels peak in approximately 20 minutes, and, after oral administration, levels peak in approximately 30 minutes. Morphine is metabolised primarily in the liver and approximately 87% of a dose of morphine is excreted in the urine within 72 hours of administration. Morphine is metabolized primarily into morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) via glucuronidation by phase II metabolism enzyme UDP-glucuronosyl transferase-2B7 (UGT2B7). About 60% of morphine is converted to M3G, and 6–10% is converted to M6G. The cytochrome P450 (CYP) family of enzymes involved in phase I metabolism plays a lesser role. Not only does the metabolism occur in the liver but it may also take place in the brain and the kidneys. M3G does not undergo opioid receptor binding and has no analgesic effect. M6G binds to mu-receptors and is a more potent analgesic than morphine. Morphine may also be metabolized into small amounts of normorphine, codeine, and hydromorphone. Metabolism rate is determined by gender, age, diet, genetic makeup, disease state (if any), and use of other medications. The elimination half-life of morphine is approximately 120 minutes, though there may be slight differences between men and women. Morphine can be stored in fat, and, thus, can be detectable even after death. Morphine is able to cross the blood-brain barrier, but, because of poor lipid solubility, protein binding, rapid conjugation with glucuronic acid and ionization, it does not cross easily. Diacetylmorphine, which is derived from morphine, crosses the blood-brain barrier more easily, making it more potent.

Detection in biological fluids

Morphine and its major metabolites, morphine-3-glucuronide and morphine-6-glucuronide, may be quantitated in blood, plasma, or urine to monitor for abuse, confirm a diagnosis of poisoning or assist in a medicolegal death investigation. Most commercial opiate screening tests based on immunoassays cross-react appreciably with these metabolites. However, chromatographic techniques can easily distinguish and measure each of these substances. When interpreting the results of a test, it is important to consider the morphine usage history of the inidual, since a chronic user can develop tolerance to doses that would incapacitate an opiate-naive inidual, and the chronic user often has high baseline values of these metabolites in his system. Furthermore, some testing procedures employ a hydrolysis step prior to quantitation that converts the metabolic products to morphine, yielding a result that may be many times larger than with a method that examines each product inidually. Interpretation can be confounded by usage of codeine or ingestion of poppy seed foods, either of which leads to the presence of morphine and its conjugated metabolites in a person's biofluids.

Effects on human performance

Most reviews conclude that opioids produce minimal impairment of human performance on tests of sensory, motor, or attentional abilities. However, recent studies have been able to show some impairments caused by morphine, which is not surprising given that morphine is a central nervous system depressant. Morphine has resulted in impaired functioning on critical flicker frequency (a measure of overall CNS arousal) and impaired performance on the Maddox Wing test (a measure of deviation of the visual axes of the eyes). Few studies have investigated the effects of morphine on motor abilities; a high dose of morphine can impair finger tapping and the ability to maintain a low constant level of isometric force (i.e. fine motor control is impaired), though no studies have shown a correlation between morphine and gross motor abilities.

In terms of cognitive abilities, one study has shown that morphine may have a negative impact on anterograde and retrograde memory, but these effects are minimal and are transient. Overall, it seems that acute doses of opioids in non-tolerant subjects produce minor effects in some sensory and motor abilities, and perhaps also in attention and cognition. It is likely that the effects of morphine will be more pronounced in opioid-naive subjects than chronic opioid users.

In chronic opioid users, such as those on Chronic Opioid Analgesic Therapy (COAT) for managing severe, chronic pain, behavioural testing has shown normal functioning on perception, cognition, coordination and behaviour in most cases. One recent study analysed COAT patients in order to determine whether they were able to safely operate a motor vehicle. The findings from this study suggest that stable opioid use does not significantly impair abilities inherent in driving (this includes physical, cognitive and perceptual skills). COAT patients showed rapid completion of tasks which require speed of responding for successful performance (e.g. Rey Complex Figure Test) but made more errors than controls. COAT patients showed no deficits in visual-spatial perception and organization (as shown in the WAIS-R Block Design Test) but did show impaired immediate and short-term visual memory (as shown on the Rey Complex Figure Test – Recall). These patients showed no impairments in higher order cognitive abilities (i.e. Planning). COAT patients appeared to have difficulty following instructions and showed a propensity towards impulsive behaviour, yet this did not reach statistical significance. Importantly, this study reveals that COAT patients have no domain-specific deficits, which supports the notion that chronic opioid use has minor effects on psychomotor, cognitive, or neuropsychological functioning.

It is difficult to study the performance effects of morphine without considering why a person is taking morphine. Opioid-naive subjects are volunteers in a pain-free state. However, most chronic-users of morphine use it to manage pain. Pain is a stressor and so it can confound performance results, especially on tests that require a large degree of concentration. Pain is also variable, and will vary over time and from person to person. It is unclear to what extent the stress of pain may cause impairments, and it is also unclear whether morphine is potentiating or attenuating these impairments.

See also