The Physical Examination

The Physical Examination (4)

The hallmark of medicine has always been the physical examination. Perhaps more than the actual diagnosis, the process by which the physician arrives at his or her conclusion has defined the "art" of medicine. Much has been written about the techniques by which this art is performed, and much more will continue to be written. Each generation will take from the past and apply these techniques to the future of medicine.

The physical examination is an extension of the history and extends the doctor-patient relationship initially established during the history. The skill with which the examination is performed instills a sense of confidence in the patient that the examiner knows what he or she is doing. This confidence in the physician has a positive outcome on the patient's ability to recover. Finally, the physical examination serves to narrow the list of diagnostic possibilities.

In a specialty like physiatry, in which the whole person is evaluated in terms of function, there is no adjunct more important than the physical examination. The examination provides the foundation to formulate a plan to improve a person's function. Importantly, though, in looking at function, each piece must be applied to the whole person. The examination of one joint must be applied to the whole picture of the patient, and an understanding of functional biomechanics will enable the physician to include in the physical examination other structures that may indirectly contribute to the impairment.

The focus on function and application to the whole person in physiatry can be best seen in understanding the concept of the kinetic chain. No one joint, bone, or muscle acts alone in the body. An ankle sprain can lead to low-back pain. Lowback pain can affect the serve of a tennis professional. Lateral epicondylitis can alter shoulder mechanics and lead to rotator cuff impingement. It is because of these relationships that the physiatrist must perform a thorough examination. It is this comprehensive manner that sets apart the physiatric approach from others. A thorough knowledge of the neuromuscular system and an understanding of functional biomechanics will narrow the focus of the examination so it can be done in a time-efficient manner. The relationship between the different joints and regions must be understood. In addition, a complete understanding of the muscles and their innervation is required.

An understanding of the muscle kinesiology and biomechanics is very important in the physical examination. Each muscle functions across one or more joints to provide motion or stabilization. One example would be the hamstrings. When the foot is planted, the hamstrings act in their primary function as powerful hip extensors. However, with the foot off the ground, they can become knee flexors. With a patient prone and the knee bent at 90 degrees, the gluteus maximus acts as the primary extensor because of the shortened hamstrings. Place the knee in full extension, and the hamstrings will once again act as hip extensors. We will look further into these types of relationships in the physical examination.

In today's medicine, there exists a tremendous amount of information to digest. The number of articles indexed in MEDLINE has grown in size from 1,098,000 citations in 1970 to 11,761,000 in 2000. The modern physician must have an understanding of the body down to a microcellular level. In addition, access to modern tests like magnetic resonance imaging (MRI) is achieved by a greater number of patients. Any test has its limitations, and in the example of the MRI, these can be multiple false-positive findings (1). The MRI should be used to confirm not make a diagnosis. Many physician referrals are generated from a radiologist's interpretation of a study, often without physical examination findings consistent with the results of the study. It is at this point that the well-trained physiatrist can be the link using evidence-based medicine as it applies to diagnosis, history, and physical examination.

Whole texts are dedicated to the physical exam. Due to the limits of one chapter, this will be an introduction to the physical examination and kinesiology of the cervical spine, shoulder, lumbar spine, and knee. That said, the reader should be able to approach any joint in the manner laid out here to aid in his or her diagnosis. Examination of any joint should be performed in a systematic approach. As the examination begins, the clinician should make sure that the area to be examined is properly exposed for evaluation and the patient appropriately draped. We have focused on the major joints seen in our practice—the cervical and lumbar regions of the spine, the shoulder, and the knee. Other joints will be addressed in chapters in this text. We will now address the physical examination, and the kinesiology of the muscles and joints will be explained. For reference, the dermatomes, myotomes, and sclerotomes are illustrated in Chapter 21.

It is the task of the physiatrist to perform a thorough physical examination to confirm his or her diagnosis derived from the history and additional information. It even is more important today, because of the additional tests modern technology has advanced, to understand physical examination maneuvers and their diagnostic relevance.

Joseph H. Feinberg and Peter J. Moley

Source: Physical Medicine and Rehabilitation - Principles and Practice
Thứ sáu, 27 Tháng 6 2014 17:07

Examination of the Knee

Written by


Inspection is only possible with adequate exposure. Begin by placing the patient in shorts or tying the gown up above the knee. The patient's gait should be observed first. Pay attention to the positioning of the knee on both the medial/lateral plane (valgus vs. varus) and the anterior/posterior plane (extension lag vs. knee recurvatum). Also, observe the joint above and below. Be sure to note any restrictions in the hip or ankle motion. Look at the foot for evidence of pes cavus (high arch) or pes planus (flat footed). The patient should then sit or lie on a table.

It is important to next look at the joint for any gross evidence of effusion or discoloration. Any changes can be evaluated further as the examination proceeds. Next, the examiner should assess for any muscle atrophy or fasciculations. If there is atrophy, the thigh or calf circumference should be measured and compared with the unaffected side. Finally, check the skin for any evidence of scarring from previous surgery of trauma.


Palpation of the knee should be done systematically. Begin either medially or laterally, and work across the knee. Address the skin, soft tissue, and bony aspects of the joint. Begin the examination by laterally palpating the overlying skin, which should move freely over the soft tissue and bones. The lateral collateral ligament can be palpated next. Palpate along the length of the ligament from the lateral femoral condyle to the insertion on the fibula. Have the patient cross the leg (FABER—Flexion of the knee to 90 degrees, ABduction and External Rotation of the hip) to better palpate the ligament. Moving more proximally, the biceps femoris tendon can be palpated as it comes down to its insertion on the fibular head.

Bony palpation should include the lateral tibial plateau, fibular head, and the lateral femoral condyle. All should be felt for tenderness or palpable osteophytes. In addition, the anterior portion of the lateral meniscus lies on the lateral tibial plateau and may be tender after an injury. This should be checked with the knee in 90 degrees of flexion. Moving across, the anterior portion of the knee should be palpated. Palpate over the prepatellar bursa (above the patella) and the superficial infrapatellar bursa (overlying the infrapatellar ligament). Next in the region is the patella. All four poles of the patella should be palpated, in addition to the undersurface of the medial and lateral aspects. Palpation of the medial and lateral facets of the patella can be performed with the patient lying supine and the knee completely relaxed. Tenderness or hypersensitivity is indicative of patellofemoral pathology. Furthermore, one should palpate the lateral retinacula for the presence of a synovial plica (Fig. 2-11). Proximally, the quadriceps muscle should be palpated for any discomfort of defects. Distally, the infrapatellar tendon should be palpated to its insertion on the tibia at the tibial tubercle.

FIGURE 2-11. Palpation of the lateral retinacula of the knee for synovial plica.

The medial portion of the knee is addressed in a similar fashion. Palpate the skin, and palpate in the region of the pes anserine bursa (medial to the tibial tubercle and just above the insertion of the tendons of the sartorius, gracilis, and semitendinosus). Next, palpate the medial collateral ligament from its origin on the medial femoral condyle to the medial tibia. Moving proximally, the tendons of the sartorius, gracilis, and semitendinosus should be followed from their insertion to the muscle tendon junction.

Bony palpation medially should include the medial femoral condyle and the medial tibial plateau. As with the lateral tibial plateau, the medial meniscus can be palpated. This is made possible by internally rotating the tibia with the knee at 90 degrees and palpating between the tibial plateau and femoral condyle. Palpate for joint line tenderness medially and for any palpable osteophytes.

Before turning the patient, the joint should be checked for an effusion. With the patient in the supine position, with the leg in full extension, place the examiner's thumb on the medial side below the patella. Compress the suprapatellar pouch and lateral knee to accumulate fluid on the lateral side. Compression medially should give a sense of fullness laterally. In addition, the patellar ballottement test can be performed. Using both hands, the proximal hand starts 10 cm above the patella with the thumb lateral and fingers medial. The distal hand starts 5 cm below with the same orientation. While compressing the tissues, the hands are slowly brought toward each other. When they are just above and below the patella, the index finger from the distal hand taps the patella. Without an effusion, the patella will be in the femoral condyles and there will be no findings. With an effusion, the patella will "tap" onto the femur and the examiner will feel the sensation.

The last region to be inspected is the posterior aspect of the knee. This is done best with the patient in the prone position. Palpate for the boundaries of the popliteal fossa, which include medially the semitendinosus and semimembranosus muscles. Laterally palpate for the biceps femoris muscle and inferiorly the two heads of the gastrocnemius. Within the region of the popliteal artery are the popliteal vein and posterior tibial nerve. Palpate for any popliteal cysts, which is best done with the knee in extension.

Range of Motion

Range of motion of the knee should be approximately 135 degrees of flexion and 0 degrees of extension. Both internal and external rotation should be approximately at 10 degrees. Loss of range of motion can be of traumatic or degenerative causes. It is important to check both active range of motion and passive range of motion. A patient with quadriceps weakness may be unable to achieve full active extension but with the examiner's assistance has full range of motion.

The testing can be performed with the patient seated on the edge of the examination table to start. Check the active and passive extensions (this can be incorporated into the manual muscle testing). Watch the patella during extension for its position in the trochlear groove. Active flexion can also be tested in this position, but passive flexion is better tested with the patient in the supine position. Loss of terminal flexion and extension can also be attributed to a joint effusion.


The neurologic examination should consist of manual muscle testing, sensation, and reflexes. The manual muscle testing is performed to test quadriceps strength by extending the knee. Hamstring testing should be performed with the patient flexing the knee while sitting. Another useful test is a step down test. Watch the patient step down from a foot stool in the room to assess his or her control descending and the amount of increase in the Q angle. Table 2-10 lists what should be included in manual muscle testing (24).

Reflexes can be addressed next. Table 2-11 lists what should be included in reflex testing (24).

Finally, sensation can be tested for both pinprick (lateral spinothalamic tract) and light touch (dorsal columns). Table 2-12 lists what should be included in sensation testing (24).

Ligament Stability

Stability of the ligaments should be tested with the patient relaxed and in a supine position. Beginning with the collateral ligaments, the examiner should firmly grasp the distal leg and provide a valgus (laterally applied) force to the knee. This will test the medial collateral ligament. The test should be completed with the knee in 20 to 30 degrees of flexion and also with the knee in full extension to test medial capsular integrity (Fig. 2-12). Remember to apply three points of pressure, one being distal lateral leg, the next lateral knee, and finally distal medial knee to maintain control of the leg. If possible, palpate around the knee, and palpate the ligament for a defect during the application of a valgus force.

FIGURE 2-12. Evaluation of the stability of the collateral ligaments of the knee.

In a similar fashion, apply a varus (medially applied) force to the knee to check the lateral collateral ligament. Again, it is helpful to place a finger on the ligament during the maneuver. It is also important to apply three points of pressure. As with the medial side, check in full extension and in 20 to 30 degrees of flexion.

The anterior and posterior cruciate ligaments should be examined next. The Lachman's maneuver is the most sensitive test for injury to the anterior cruciate ligament (ACL). The test is performed by firmly grasping the distal lateral thigh with the outside hand in a supine patient. The knee is then placed in slight flexion, approximately 30%. Next, the proximal medial leg is grasped by the examiner's inside hand and slightly laterally rotated. A quick upward force is then applied to the tibia by the inside hand while the thigh remains stabilized by the outside hand. The examiner is feeling for a sharp end point of the ACL. This examination maneuver is difficult and must be practiced many times before it can be done correctly (Fig. 2-13), but this is the most accurate method of judging the integrity of the ACL (25).

FIGURE 2-13. Evaluation of the stability of the ACL of the knee.

With the patient in a supine position and the hip flexed at 45 degrees while the knee is in 90 degrees of flexion, the examiner can test both the posterior and the anterior cruciate ligaments. The foot is stabilized when the examiner sits on the patient's foot. To test the ACL, the examiner grasps around the proximal tibia and places the thumbs on the medial and lateral tibial plateaus. The tibia is then pulled anteriorly with respect to the femur. The amount of anterior movement should be minimal and equal to the opposite side. The movement is compared with the opposite knee.

Testing of the posterior cruciate ligament is completed just after the ACL. With the patient supine, the hip is flexed to 45 degrees and the knee flexed to 90 degrees. The foot is immobilized by the examiner sitting on the foot. The examiner then gives a posteriorly directed force to the tibia with the thumbs on the tibiofemoral junction. As with the anterior drawer test, the laxity is compared with the opposite side. Another indication of a posterior cruciate tear is hyperextension of the knee joint. This can be observed with the patient supine and the hip and knee flexed at 90 degrees. The examiner elevates the leg by lifting the heel with all muscles relaxed. Again, both sides should be tested for comparison.

The posterolateral complex of the knee includes the posterolateral capsule, the popliteus muscle, and the lateral collateral ligament. When one or more of these structures are injured, particularly in the setting of a posterior cruciate ligament deficiency, the knee becomes susceptible to rotatory instability. Posterolateral complex laxity can be demonstrated by examining the tibial external rotation with the knee flexed at 90 degrees and comparing it with the contralateral side.

Medial and Lateral Menisci

The medial and lateral menisci may account for the second most commonly injured structures in the knee, second only to the patellofemoral joint (PFJ) as a source of knee pain in the younger patient groups. Rotatory motion, particularly when combined with compression, is felt to be the common biomechanical factor leading to injury. An aging and degenerative meniscus is probably more susceptible to this type of trauma. Commonly, injury to the meniscus will result in an effusion, making the detection of an effusion an important clinical test when looking for meniscal injury. Joint line tenderness is sensitive for meniscal injury but not specific. The posterior horns are loaded during flexion so that simultaneous knee flexion and rotation will be sensitive for pain secondary to a posterior horn meniscal tear. Pain associated with the internal tibial rotation tends to be more indicative of injury of the lateral meniscus, whereas external rotation may be more suggestive of the medial meniscus.

A test for meniscal injury would be the McMurray's test (26). McMurray's test is performed with the patient supine.

The knee is brought into full flexion, and the tibia is internally rotated and then extended to 90 degrees while being held internally rotated. An audible pop, click, or locking is considered a positive McMurray's test and felt to be specific for posterior horn bucket handle lateral meniscal tear. Externally rotating the tibia and performing the same motion will detect injury to the posterior horn of the lateral meniscus (Fig. 2-14).

FIGURE 2-14. Evaluation for meniscal injury or McMurray's test of the lateral meniscus for the knee.

Biomechanics of the Knee

The knee appears to function primarily as a hinge joint, but with closer observation, its biomechanics are more complex. Rotatory motion also occurs and, although very limited, may play an important role for many of the acute traumatic and chronic overuse injuries. The primary static stabilizers include the anterior cruciate and posterior cruciate ligaments, the posterolateral complex, the remaining capsular structures, and, to a lesser extent, the medial and lateral menisci. The role of the dynamic stabilizers of the knee in controlling rotatory motion has not been well studied. However, it does appear that the medial hamstrings, lateral hamstrings, and popliteus muscles play a role here in dynamic rotary stabilization. Although knee muscle kinesiology has been extensively studied, the great majority of work has been looking at the biomechanics of the PFJ (27-33). This is not surprising, considering that patellofemoral syndrome is the most common knee disorder causing pain and limiting function.

There is no other musculoskeletal disorder in which the kinetic chain plays a greater role or requires a more thorough analysis than with patellofemoral-related pain. It is widely believed that the relative position of the patella in the PFJ, how it sits at rest, and how it travels during dynamic activities can contribute to patellofemoral syndrome and be a risk factor for patellofemoral subluxation/dislocation (26,34). The quadriceps muscles are the primary knee extensors, with a small contribution coming from some fibers of the adductor magnus (35). Three muscles of the PFJ—the vastus lateralis (VL), the vastus medialis, and the vastus intermedius—cross only the knee joint and are relatively fixed in their line of pull. Tightness in the lateral or medial retinacular structures can somewhat alter this. The hip joint is the primary rotator of the lower limb, and the degree of rotation may play an important role in patella tracking disorders. The fourth quadriceps muscle, the rectus femoris, is a two-joint muscle that crosses the hip in addition to the knee joint. It originates from the anterior superior iliac spine (ASIS), and calculating the Q angle reflects its line of pull. The Q angle is measured by extending a line from the ASIS to the midpoint of the patella. One measures the angle created by the intersection of the second line that connects the midpoint of the patella to the tibial tubercle. The normal Q angle is 10 to 14 degrees, and any significant deviation from this may lead to improper patella tracking and subsequent PFJ pain. External rotation of the hip decreases the Q angle, whereas internal rotation increases it. During normal gait mechanics, ankle pronation occurs simultaneously with hip internal rotation; conversely, supination occurs with hip external rotation. Therefore, hyperpronation can increase the Q angle, whereas hypersupination can decrease it.

EMG has been used to study knee muscle function, primarily looking at the balance and relationship among the VL, vastus medius (VM), and vastus medialis oblique (VMO), and to better understand patellofemoral maltracking syndromes (27,36-39). Sczepanski et al. (38) compared VMO and VL EMG activity during concentric and eccentric isokinetic exercises in asymptomatic individuals and found a greater VMO/ VL ratio only during concentric contractions at 120 degrees per second. Reynolds et al. (37) studied asymptomatic women and found no difference in the VMO/VL relationship through full range of motion. In a study that looked at the effect of Q angles, Boucher et al. (27) found no significant differences in VMO/VL EMG ratio between asymptomatic volunteers and patients with patellofemoral maltracking syndromes. They did find a decrease in the VML/VL ratio in a subset of patellofemoral syndrome (PFS) patients with Q angles greater than 22 degrees at 15 degrees of knee extension. Voight and Wieder (39) compared the reflex response times of the VMO and VL EMG following a tendon tap. There was an increase in the VL response times in patellofemoral maltracking syndrome patients. These studies are far from conclusive, and the debate about the relationship between the VMO and the VL as contributing factors for patellofemoral disorders continues, while conventional clinical management remains based on these principles.

Kinesiological work has also been done to better understand muscle mechanics as it pertains to patients who have torn their ACLs and to help determine the most effective methods of managing these patients both nonsurgically and postoperatively. The ACL restrains anteromedial rotation of the tibia. An EMG study by Limbard et al. (40) on ACLdeficient patients found an increase in biceps femoris activity with a simultaneous decrease in quadriceps activity during swing-to-stance transition at normal walking speeds. At this point in gait, the hamstring may have been firing to prevent anteromedial tibial rotation. The hamstrings were less active in these patients from midstance to terminal stance. Branch et al. (41) found an increase in EMG activity of the lateral hamstrings in ACL-deficient patients during swing phase and an increase in medial hamstring and a decrease in quadriceps activity during stance phase. Tibone et al. (42) had reported similar findings. Solomonow et al. (43) stressed that an intact ACL led to excitement of the hamstrings and inhibition of the quadriceps. Baratta et al. (44) studied coactivation patterns. Hypertrophy of the quadriceps impaired hamstring coactivation, and strengthening of the hamstrings reduced this. Lutz et al. (45) demonstrated a greater ability to perform cocontractions of the hamstrings and quadriceps during closed kinetic chain exercises, thus conferring more stability to the knee. Weresh et al. (46) studied the popliteus muscle and found no difference in activation between ACL-deficient patients and controls.

Based on these EMG studies, one can now look for some of the muscle imbalances and other anatomic factors for patellofemoral maltracking syndromes such as hyperpronation or excessive hip internal rotation during the physical examination. Once these findings have been identified, they can then be more specifically addressed with physical therapy or some other form of a structured exercise program.


Source: Physical Medicine and Rehabilitation - Principles and Practice
Thứ năm, 26 Tháng 6 2014 17:05

Examination of the Lumbar Spine

Written by


The examination of the low back, like the other areas of the body, should begin as the patient enters the office and examination room. Watch how the patient moves while walking and how he or she moves changing positions. The patient's posture should be noted. The patient should be in a gown that opens in the back for full exposure. Look at the muscle bulk and symmetry of the low back. Also look at the skin for scarring or discoloration. Inspect the lumbar spine from behind and the side to assess for lordosis. Often, patients with stenosis may have hypolordosis because of spinal stenosis. Young athletes might have hyperlordosis because of an imbalance of paraspinal to abdominal strength.


The next step involves palpation of the muscles of the back, spinous processes, and important landmarks of the pelvis. From the back, the paraspinal muscles and the interspinous ligaments can be palpated. Palpate for the spinous processes, and in an older patient, these should be percussed to help in the diagnosis of a compression fracture. Finally, palpate for the bilateral posterior superior iliac spines (PSIS) to determine pelvis alignment. The examiner should place her thumbs on the bilateral PSIS and index fingers on the iliac crests. The height of the pelvis can be checked for alignment by comparing the two sides. Look for symmetry of bulk.

Range of Motion

Range of motion should be tested both actively and actively assisted if possible. Both are important in the evaluation of the low back. Range of motion should be checked in flexion, extension, rotation, and side bending. If there is posterior pain to one side, the examination should include extension to both the left and the right to stress the zygapophyseal joints and to narrow the foramen in a patient with foraminal stenosis or a foraminal disc protrusion.

It is important to watch the spine during motion. In forward flexion, ask the patient to touch his or her toes and watch to see whether the motion comes from the spine or hips. Watch for reversal of the lumbar lordosis by inspecting the prominence of the spinous processes. In extension, look for the motion in the lumbar spine versus the hip and knees in many patients. While assessing range, ask the patient whether the discomfort is greater in flexion or extension. Be aware of conditions that can lead to spinal inflexibility like ankylosing spondylitis or diffuse idiopathic spinal hyperostosis (DISH).

Rotation and side bending can be evaluated next. The patient should be able to rotate his or her shoulders perpendicular to the pelvis. It is often helpful to stabilize the pelvis while the patient is rotating. Have the patient side bend next, and compare it to the opposite side. With each maneuver, the examiner can follow the active motion with active assisted motion to see to what degree the active motion is limited.

Examination of the hip joint and the muscles crossing it is an important part of the lumbar spine examination because of the intimate association with the pelvis and lumbar spine. Limited hip rotation may lead to increased rotatory forces in the spine. A tight rectus femoris may tilt the pelvis anteriorly, increasing the lumbar lordosis, whereas hamstring tightness may tilt it posteriorly and decrease it.

Maybe no other joint in the young person has seen more change in approach over the past few years than the hip. In evaluating the spine, the examiner should have an idea of any suspected loss of range of motion. In the older patient, the loss of range of motion, particularly internal rotation, needs to be documented, and the practitioner needs to determine how much that pain contributes to the patient's symptoms. In a younger patient, the loss of range of motion can be early osteoarthritis, but in the absence of joint space loss on plain film radiographs, it could be a soft tissue injury or a bony anatomy change. Studies have shown that labral tears can be seen in young patients with complaints of groin pain approximately 20% of the time (21). These lesions have a high association with bony abnormalities (22) and could be precursors for osteoarthritis (23).

The examination of the hip should consist of at least three elements. The first standing on one leg or walking to look for dynamic weakness in the form of a lurch to the opposite side or compensation to the same side due to weakness. This can be checked in the side lying position statically. Next, the patient should be supine and simple range of motion should be checked at 90 degrees of hip and knee flexion. Finally, the hip should be checked in flexion at 90 degrees, adduction, and internal rotation for the presence of groin pain. Table 2-6 shows normal range of motion of the hip.


The examination of the low back always includes a full neurologic examination of the lower limbs. Radiculopathies can be very subtle, and as with the cervical spine examination, manual muscle testing, sensory examination, and reflexes all must be addressed to find these subtle changes. The order to proceed is examiner dependent. Similar to the cervical spine examination, manual muscle testing should also be confirmed with additional muscles when subtleties exist because the muscles of the lower limbs have two or more levels of innervation. However, unlike the upper limbs, the lower limb muscles can generate greater force. The examiner needs to provide enough resistance to detect subtle muscle weakness. In addition, heel and toe walking can be added to the gait examination to test the tibialis anterior and gastrocnemiussoleus muscles. Table 2-7 lists what should be included in manual muscle testing (19).

Reflexes can be addressed next. Table 2-8 lists what should be included in reflex testing (19).

Finally, sensation can be tested for both pinprick (lateral spinothalamic tract) and light touch (dorsal columns). Table 2-9 lists what should be included in sensation testing (19).

Additional Tests

Examination of the low back should include special tests that are specific for certain pathologies. Every back examination should include a straight leg raise if there is concern about radiculopathy. The straight leg raise, also known as the Lasegue's test, can be performed with the patient seated or in the supine position. With the patient supine, raise the affected lower limb with the knee in full extension. Starting at 30 degrees of leg elevation, patients with nerve root irritation will begin to have discomfort. Stretch on the nerve will be maximal at 65 degrees, and pelvic rotation will begin. A positive test is pain down the limb to the knee in the arc of 35 to 65 degrees. For more subtle cases, ankle dorsiflexion can be added to maximize the nerve stretch.


Source: Physical Medicine and Rehabilitation - Principles and Practice
Thứ tư, 25 Tháng 6 2014 17:03

Examination of the Shoulder

Written by


Inspection of the shoulder requires that the shoulder be exposed and the patient appropriately draped. The shoulder "joint" actually consists of four different joints: sternoclavicular, acromioclavicular, glenohumeral, and scapulothoracic. Three of the joints are true joints, while the scapulothoracic joint is not a true articulating joint lined with cartilage. It is important to visualize each of the joints. Begin by inspecting the normal bony prominences and muscle bulk. The most obvious changes can be seen in the acromioclavicular joint. Comparison to the other shoulder is essential.


Palpation can be done either from in front of the patient or from behind the patient. Begin by palpating from the sternoclavicular joint along the clavicle to the acromioclavicular joint. Palpate the coracoid process and the coracoclavicular ligament. Move laterally, and palpate the tendon of the long head of the biceps. Continue palpation medially to the lesser tuberosity and laterally to the greater tuberosity. Next, palpate the scapula along the acromion and medially along the spine of the scapula. Find the superior and inferior angles of the scapula.

The muscles should also be palpated for tender points and evaluation of their bulk. The supraspinatus, infraspinatus, and teres minor can be palpated by bringing the upper limb into extension at the shoulder and palpating anteriorly (3).

Range of Motion

The motion of the joints should be observed. Watch the different joints and their symmetry of motion. This should be done from in front of and behind the patient.

The shoulder has the greatest range of motion of any joint. Subtle changes must be assessed and asymmetries noted during the physical examination. Active and passive motions should be assessed. To begin, check the patient's active range of motion. There are six directions of motion: abduction, adduction, extension, flexion, internal rotation, and external rotation. Active abduction should allow the patient to touch the dorsal surface of his hands with the arms straight above the head. Adduction will allow the patient to bring her arm into the plane of the torso. Each of these can be tested in conjunction with the testing for internal and external rotations or alone. Functional internal rotation can be demonstrated by having the patient touch his midback (Fig. 2-2). Record the level that the thumb touches, and repeat on the opposite side. Have the patient reach over the head and touch the upper back to test external rotation. As with internal rotation, record both sides. Finally, have the patient bring the straight upper limb forward to test flexion and backward to test extension.

FIGURE 2-2. Internal rotation determination during shoulder range of motion evaluation.

The shoulder should then be checked for passive range of motion. The importance of checking the passive range can be seen in a patient with adhesive capsulitis. Although there may appear to be both internal and external rotations, the motion often comes from the scapular thoracic joint. By isolating the glenohumeral motion, both can be assessed, and there is increased reliability in the assessment of the glenohumeral motion (8).

FIGURE 2-3. Stabilization of the scapula during shoulder range of motion evaluation.

Passive internal and external rotations can be tested by bringing the shoulder into 90 degrees of abduction while holding the elbow to 90 degrees of flexion. Stabilizing the scapula with one hand to truly evaluate glenohumeral motion, internally and externally rotate the shoulder (Fig. 2-3). For some examiners, placing the patient in the supine position with a posteriorly directed force on the coracoid process might be easier and has been found to be reliable (9). Note the motion, compare it to the other side, and repeat with the scapula free to see the scapulothoracic motion. Table 2-4 shows the normal range of motion.


Motor testing of the shoulder should follow the examination of the range of motion. Each motion should be tested for strength. The major muscles used to move the shoulder are the deltoid, pectoralis major, latissimus dorsi, biceps, and triceps. In addition, there are smaller stabilizing muscles, including the rotator cuff muscles. Additionally, the scapular position and control are coordinated by the trapezius, levator scapulae, rhomboids, and serratus anterior. Test the major movers with one hand stabilizing the shoulder and the other providing resistance.

After testing the larger movers of the shoulder, it is important that the smaller stabilizers are addressed, as these are often involved in the pathology of the shoulder. The supraspinatus is tested with the upper limb abducted 90 degrees, internally rotated with the thumb down and in the plane of the scapula. Apply steady pressure while asking the patient to abduct the limb (Fig. 2-4). Next, the external rotators can be assessed. Have the patient adduct the limb and flex the elbow at 90 degrees. The examiner stabilizes the elbow against the torso with one hand and places the other hand on the distal forearm. The patient then rotates the forearm away from the body against resistance.

FIGURE 2-4. Supraspinatus strength determination during shoulder evaluation.

Finally, the subscapularis should be assessed.This is the most difficult to check for subtle changes. The classically described maneuver is the "lift-off test." This is done by the patient placing the dorsum of his hand on his back while the elbow is flexed at 90 degrees. The examiner then holds the hand off the back and instructs the patient to hold his hand in that position once the hand is released. If the patient is able to maintain the hand position, the subscapularis is intact. If the hand falls to the back, there is some deficiency in the muscle (Fig. 2-5).

FIGURE 2-5. Subscapularis strength determination during shoulder evaluation.

Sensory testing of the shoulder should be done in conjunction with the neck. Of importance for the shoulder, the dermatome for the axillary nerve should be tested. This is a silver dollar-sized area over the deltoid on the lateral upper arm. This is especially important after dislocations, as the axillary nerve can be injured.

Additional Tests

Impingement Tests

There are many tests for impingement of the rotator cuff muscles. We will address two of the more common tests. The first is the Hawkins' maneuver (10). With the arm abducted to 90 degrees, elbow flexed at 90 degrees, and the humerus in the plane of the scapula, the examiner stabilizes the scapula and internally rotates the shoulder (Fig. 2-6). Pain with this maneuver is caused by impingement of the greater tuberosity on the coracoacromial ligament.

FIGURE 2-6. Hawkins' maneuver to evaluate shoulder rotator cuff impingement.

The Neer's impingement sign is performed by stabilizing the scapula and slowly forward flexing the shoulder (11; Fig. 2-7). The elbow should be straight during the maneuver. The limb can be tested both internally rotated and neutral during testing.

FIGURE 2-7. Neer's impingement sign to evaluate shoulder rotator cuff impingement.

Labral Tests

Another test of importance to the shoulder exam is the active compression test. The test is used to assess for anterior labral tears and acromioclavicular injuries. With the patient standing, the examiner stands on the affected side. The shoulder is brought into 90 degrees of abduction, 10 to 15 degrees of adduction, and internal rotation of the upper limb. The patient then resists a downward force by the examiner. At this point, the patient should either feel pain at the top of the shoulder (A-C joint pathology) or inside the shoulder (anterior labrum). The limb is then brought into full external rotation and the symptoms should be alleviated. Sensitivity and specificity are both excellent for the test (12).

Stability Tests

Shoulder instability can be diagnosed with a variety of maneuvers and most likely more accurately using the results of two or more tests. The examiner can begin with the apprehension test. The patient is placed in a supine position with the upper limb to be examined next to the edge of the table. The shoulder is then abducted to 90 degrees, and the elbow is flexed. The examiner then externally rotates the shoulder (Fig. 2-8). A patient with a positive "apprehension sign" has discomfort and a feeling of apprehension in the shoulder as it is externally rotated past 90 degrees that is relieved when the examiner stabilizes the shoulder with a posteriorly directed force to the shoulder with his free hand. The second part of the examination is named the "relocation sign" (Fig. 2-9). Both parts of the examination check for anterior instability of the shoulder, although the relocation test adds specificity to the diagnosis.

FIGURE 2-8. Apprehension sign to evaluate anterior instability of the shoulder.

FIGURE 2-9. Relocation sign to evaluate anterior instability of the shoulder.

The next tests are the anterior and posterior drawer signs (13). With the patient in the same supine position, the examiner stabilizes the forearm and the humerus. Next, the examiner places her free hand on the glenohumeral joint. With the distal portion of the joint stabilized, the humerus is directed anteriorly and posteriorly (Fig. 2-10). The amount that the humeral head moves beyond the rim of the glenoid fossa is graded in Table 2-5. Similarly, this can be applied to the posterior movement.

FIGURE 2-10. Anterior and posterior drawer signs to evaluate posterior instability of the shoulder.

The final piece of instability is the inferior drawer or "sulcus sign." With the patient seated or standing, the examiner pulls down the upper limb. The examiner's free hand is stabilizing the scapula. A positive "sulcus sign" is when an indentation in the skin is noticed between the acromion and the humeral head (14).

Sports Biomechanics

Identifying the biomechanical flaws in a thrower that contribute to the development of bicipital tendonitis or a superior labrum anterior posterior (SLAP) lesion, or the flaws in a runner that lead to patellofemoral pain, requires an understanding muscle kinesiology and joint biomechanics. This helps determine not only the factors that may have been causative but also those that may increase the risk of an injury, and if so identified, allow prevention. This can be especially valuable during preparticipation examinations (15). The focus of sports medicine continues to be treatment rather than prevention. One reason for this is the limited scientific data that clearly demonstrate the effectiveness of prevention programs based on preinjury evaluations. Intuitively we believe that restrictions in motion or certain strength deficits may predispose an athlete to an injury, and if we address them, we can lower the risk. But do we have the research to back this up?

Much of our understanding of muscle kinesiology comes from work done in labs using electromyography (EMG) to look at muscle firing patterns. One must be extremely cautious interpreting these studies. Although very general muscle firing patterns can be determined, some important technical factors are often overlooked. The relative activity of one muscle cannot be compared with another for several reasons. One is that the amplitude of a muscle's EMG signal varies widely based on whether a muscle is contracting concentrically or eccentrically. During certain sports activities, there will usually be muscles undergoing both (usually agonists and antagonists) types of contractions simultaneously, and it may not always be readily evident which is doing which. For example, during the acceleration phase of throwing, the shoulder flexes forward, but the exact point at which the shoulder internally rotates is important in determining which of the rotator cuff muscles are contracting concentrically and which are contracting eccentrically. To be certain, one must also perform a video kinematic analysis.

Several other factors play an important role in comparing the EMG signal of different muscles. The amplitude of the EMG signal will vary based on the location of the electrode (in relation to the muscle's motor point), the type of electrode (surface vs. intramuscular), and the degree of muscle fatigue. Furthermore, because one compares the EMG activity to activity during maximal voluntary contraction (MVC) of the same muscle, activity determined during MVC must be reliable and statistically reproducible. This issue is frequently not fully and adequately addressed.

Nevertheless, the information collected on muscle kinesiology has allowed us to better understand basic muscle mechanics. Understanding the major technical limitations will help prevent us from drawing erroneous conclusions.

Biomechanics of the Overhead Athlete

The biomechanics of the overhead athlete have been extensively studied. The motion of throwing a baseball and serving a tennis ball overhead has similarly been broken into five phases: windup, early cocking, late cocking, acceleration, and follow-through. The stage of late cocking, during which the shoulder is abducted and externally rotated, may potentially be dangerous to the glenohumeral joint, where inherent instability may lead to anterior translation and load the labrum or capsule anteriorly. Symptoms of posterior impingement can also be elicited when there is excessive anterior/posterior translation compressing redundant scar tissue in the region of the posterior capsule. Kinesiological studies have demonstrated that all four muscles of the cuff are most active from the late cocking to acceleration phase (16-18). This is not surprising because the cuff is felt to be a dynamic stabilizer of the glenohumeral joint, and the position in late cocking puts the glenohumeral joint in a potentially unstable position. Studies have also demonstrated that the triceps begins to fire in late cocking and then in acceleration (16,17). This is probably to prevent hyperflexion of the elbow during late cocking and may also serve as a prestretch to create a plyometric type of contraction of the triceps during acceleration to propel the forearm, wrist, and hand along with either the racquet or the baseball. The biceps then fires during the deceleration phase to allow elbow extension to occur in a controlled fashion. If this occurs too rapidly because of inadequate biceps control, overload can occur to the biceps muscle or biceps tendon or lead to avulsion, in which the biceps tendon anchors itself along the superior labrum. Injury to the labrum at this level has been identified as a SLAP lesion (19). The muscle kinesiological data collected have supported the theoretical basis for the mechanisms of injury to these various structures. This information can then be used on physical examination so that the clinician can reproduce symptoms in the phase where injury occurs. One then combines some basic physical examination findings based on observation and palpation with functional tests, such as the apprehension sign or testing the biceps during an eccentric load. Not only can an anatomic diagnosis be made of the injured structure, but a functional diagnosis can be made as well. One must also be careful to not confuse strength with motor skill. Adequate strength on manual muscle testing does not guarantee proper muscle function. Poorly developed muscle skill, proprioception, the proper agonist/antagonist balance during contractions, and the lack of proper timing of muscle firing can all contribute to an overuse injury. Any of these should be considered at least a potentially contributing factor.

To further shed light on a more complete biomechanical picture, the kinetic chain must also be considered. This requires a sound understanding of the role each component of the chain plays during a skilled athletic maneuver. Any pathology at any point in the chain can alter the athlete's mechanics and lead to overload elsewhere. This may sound somewhat vague and generalized, but it is part of the functional approach practitioners working with athletes should consider. Throwers who have lost trunk/spine flexion/extension or pelvic/hip rotation may lose power from the loss of torque normally created during late cocking into acceleration phase or may have difficulty slowing down elbow extension during deceleration phase (20). Other components of the kinetic chain essential to minimizing trauma to the shoulder and arm are adequate neck rotation and eccentric strength of quadriceps. Compensation for restrictions in motion and relative weakness may lead to greater demands on power generated by the rotator cuff. This can create greater torque in the glenohumeral joint or require a greater and excessive eccentric contraction of the biceps. Eccentric overload of the biceps may injure the bicipital tendon of the labrum at its point of origin creating a SLAP lesion (19).


Source: Physical Medicine and Rehabilitation - Principles and Practice


Inspection of the neck begins upon meeting the patient. Look to see if the patient moves the shoulders when he or she turns the neck, a sign of decreased range of motion, or if he or she winces with certain motions. Take note of the patient's relaxed posture as changes to improve poor posture can be easily addressed in therapy. As the examination proceeds, the clinician should make sure that the neck is properly exposed for evaluation. Look at the muscle bulk and symmetry of the neck, upper back, and shoulders. Also look at the skin for scarring or discoloration. You will be surprised at the details left out by patients. It is not uncommon to learn about a patient's previous surgery during the exam.


The next step involves palpation of the neck and upper thoracic region. Begin in a systematic fashion, either starting from the front or back. From the back, the paraspinal muscles and the nuchal ligament can be palpated. Working down, the upper and middle trapezius muscles should also be palpated for tender or trigger points (2). Palpate for the spinous process of the seventh cervical vertebrae, which should be larger than the superior segments in a neutral position of the cervical spine.

Place the patient in the supine position with the patient's head near the end of the table. Sit with your stool directly behind the patient's head, and continue palpation. Rotate the patient's neck 45 degrees, palpate each zygapophyseal joint, and note whether the patient feels discomfort at a joint that is greater than the opposite corresponding zygapophyseal joint. From this position, the anterior muscles, most notably the sternocleidomastoid and more laterally the scalenes, can be palpated. Palpate the sternocleidomastoid muscle from its origin at the sternoclavicular joint to the insertion on the mastoid process. Rotate the neck from side to side to make the muscle more prominent if it is initially difficult to find. Look for symmetry and bulk.

Range of Motion

Range of motion should be tested both actively and passively. Both are important in the evaluation of the neck. Guarding due to pain, muscle tightness, and muscle imbalances can reduce range of motion to one side during active testing, but the motion may often be full when tested passively. Osteophytes and zygapophyseal joint arthritis can also lead to fixed restrictions. This would be confirmed when the same loss of range of motion found actively is also demonstrated passively.

Range of motion should be checked in flexion, extension, rotation, and lateral or side bending. Motion is not divided equally between the vertebrae. Approximately 50% of flexion and extension come from the atlanto-occipital joint. At the atlantoaxial joint, approximately 50% of the rotation takes place (3).

Guidelines for normal motion are as follows: Normal flexion allows the patient to touch his chin to his chest, and extension allows the patient to look up at the ceiling. In normal rotation, the patient should be able to bring her chin over the acromion. Side bending done toward the ipsilateral shoulder should be approximately 45 degrees. Always begin with active range of motion, particularly in the injured patient. The patient may guard, and this will reduce the range. Forcing motion may make the patient uncomfortable and can injure a patient with zygapophyseal joint dysfunction (4).


Included in any examination of the neck is a full neurologic examination of the upper limbs. Radiculopathies can be very subtle, and all components of the examination, manual muscle testing, sensory examination, and reflexes must be addressed to find these subtle changes. The order to proceed is examiner dependent. Manual muscle testing should also be confirmed with additional muscles when subtleties exist, as the muscles of the upper limb have two or more levels of innervation. Table 2-1 shows what should be included in manual muscle testing.

Reflexes can be addressed next. Table 2-2 shows what should be included in reflex testing.

Finally, sensation can be tested for both pinprick (lateral spinothalamic tract) and light touch (dorsal columns). If there is a concern about carpal tunnel or double crush, two-point discrimination may be more sensitive (5). Table 2-3 shows what should be included in sensation testing.

Examination of the neck should also include a compression test or Spurling's maneuver (6) (Fig. 2-1). The test assesses the mechanical neuroforaminal narrowing of the C4-5, C5-6, and C6-7 with ipsilateral oblique extension (7). The objective of the test is to compress an irritated nerve with the following motion: The neck is brought into slight extension and side bending followed by an axial compression. A positive result reproduces pain along a dermatome below the shoulder. Finally, as with the joints, it is always important to examine the adjacent joints. In the case of the cervical spine, a full examination of the shoulder should be performed to rule out underlying or contributing shoulder pathology.

FIGURE 2-1. Compression test or Spurling's maneuver.


Source: Physical Medicine and Rehabilitation - Principles and Practice

Latest Items

Chính sách bảo mật

Hits:497 Chính sách & Hướng dẫn BS Mai Trung Dũng

Cám ơn quý khách đã truy cập vào website Điều Trị Đau Shop được vận hành bởi CÔNG TY CỔ PHẦN PHÁT TRIỂN KHOA HỌC KỸ THUẬT Y SINH - BIOMEDICAL TECH. Chúng tôi tôn trọng và cam kết sẽ...

Read more